博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作学生工作校友之家招聘信息内部信息English
博彩导航
 学院新闻 
 通知通告 
 学术活动 
 学生工作 
 人才培养 
 
当前位置: 博彩导航>>博彩导航>>学术活动>>正文
甬江数学讲坛427讲(2024年第13讲)-- Vertex algebras and 4D/2D correspondence
2024-03-13 15:40     (点击:)

报告时间:2024319 下午15:30开始

人:李博涵(清华大学)

报告地点:包玉书9号楼504

报告题目:Vertex algebras and 4D/2D correspondence

报告摘要:We study the representations of the simple affine vertex algebras at non-admissible level arising from rank one 4D SCFTs. In particular, we classify the irreducible highest weight modules of $L_{-2}(G_2)$ and $L_{-2}(B_3)$. It is known by the works of Adamovi\'{c} and Per\v{s}e that these vertex algebras can be conformally embedded into $L_{-2}(D_4)$. We also compute the associated variety of $L_{-2}(G_2)$, and show that it is the orbifold of the associated variety of $L_{-2}(D_4)$ by the symmetric group of degree 3 which is the Dynkin diagram automorphism group of $D_4$. This provides a new interesting example of associated variety satisfying a number of conjectures in the context of orbifold vertex algebras.

报告人简介: 李博涵,清华大学丘成桐数学科学中心博士研究生,研究方向为四维超对称共形场论及顶点代数的表示理论。在J. High Energy Phys发表多篇文章。


关闭窗口
宁波大学 | 图书馆