博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作党风廉政学生工作校友之家招聘信息内部信息English
博彩导航
 学院新闻 
 通知通告 
 学术活动 
 学生工作 
 人才培养 
 
当前位置: 博彩导航>>博彩导航>>学术活动>>正文
甬江数学讲坛408讲(2023年第84讲)- A selection principle for weak KAM Solutions via the Freidlin-Wentzell large deviation principle of invariant measures
2023-12-11 14:27     (点击:)

报告题目:A selection principle for weak KAM Solutions via the Freidlin-Wentzell large deviation principle of invariant measures

报 告 人:Prof. Jianguo Liu (刘建国) (Duke University)
会议时间:2023年12月13日 15:30-17:30

报告地点:包玉书 9号楼113报告厅

报告摘要:Many ideas in weak KAM theory, rooted in Freidlin-Wentzell's variational construction of the rate function of the large deviation principle for invariant measures, are revisited in this seminar. We reinterpret Freidlin-Wentzell's theory from a weak KAM perspective. We will use one-dimensional irreversible diffusion processes on a torus to illustrate essential concepts in weak KAM theory, such as the Peierls barrier, the projected Mather/Aubry/Mane sets, and the variational formulas for both self-consistent boundary data at each local attractor and the rate function. The weak KAM representation of Freidlin-Wentzell's variational construction of the rate function is proved, based on the global adjustment for the boundary data and the local trimming from the lifted Peierls barriers. This rate function provides the maximally Lipschitz-continuous viscosity solution to the corresponding stationary Hamilton-Jacobi equation, satisfying the selected boundary data on the projected Aubry set. The rate function, the selected unique weak KAM solution, serves as the global energy landscape of the original stochastic process. Additionally, a probability interpretation of this global energy landscape from the weak KAM perspective will also be discussed.

报告人简介:1982年获复旦大学数学学士学位,1985年获复旦大学数学硕士学位,1990年获加州大学洛杉矶分校(UCLA)数学博士学位。1990-1991年在伯克利数学研究所做博士后,1991-1993年任纽约大学数学研究所讲师,1993-1997年任坦普大学数学系助理教授,1997-2001年任马里兰大学(UMCP)数学系副教授,2001-2009年任马里兰大学数学系教授,2009年转入杜克大学数学系任教授。现在美国数学会的Fellow。 在数值分析、偏微分方程和计算流体力学方面做了许多出色的工作。



附件【甬江数学讲坛408讲(2023年第84讲)-屈长征-刘建国.docx已下载
关闭窗口
宁波大学 | 图书馆


地址:宁波市江北区风华路818号宁波大学包玉书9号楼