报告时间:2023年3月23日 13:00开始
报 告 人:陈敏(浙江师范大学 教授)
报告地点: 9-113
报告题目: An (F_1, F_4)-partition of planar graphs with girth 6
报告摘要: Let $G=(V, E)$ be a graph. If the vertex set $V(G)$ can be partitioned into two non-empty subsets $V_1$ and $V_2$ such that $G[V_1]$ and $G[V_2]$ are graphs with maximum degree at most $d_{1}$ and $d_{2}$, respectively, then we say that $G$ has a $(\Delta_{d_{1}}, \Delta_{d_{2}})$-partition. A similar definition can be given for the notation $(F_{d_1},F_{d_2})$-partition if $G[V_i]$ is a forest with maximum degree at most $d_i$, where $i\in \{1,2\}$. The maximum average degree of $G$ is defined to be mad$(G)=\max\{\frac {2|E(H)|}{|V(H)|}: H\subseteq G\}$. In this talk, we prove that every graph $G$ with mad$(G)\le\frac{16}{5}$ admits an $(F_{1}, F_{4})$-partition. As a corollary, every planar graph with girth at least $6$ admits an $(F_{1}, F_{4})$-partition. This improves a result in [O. V. Borodin, A. V. Kostochka, Defective $2$-colorings of sparse graphs, J. Combin. Theory Ser. B 104 (2014) 72--80.] saying that every graph $G$ with mad$(G)\le\frac{16}{5}$ admits a $(\Delta_{1}, \Delta_{4})$-partition. This is joint work with Andr\'{e} Raspaud and Weiqiang Yu.
报告人简介: 陈敏,女,1982年6月生,浙江师范大学教授,博士生导师,现任学校教务处处长,曾任数计学院副院长。现为省高校中青年学科带头人,省高校高层次拔尖人才,中国运筹学会图论组合分会理事、副秘书长,第九届世界华人数学家大会(ICCM 2022)45分钟特邀报告人。主要研究方向为图的染色理论。迄今在J. Combin. Theory Ser. B、European J. Combin.、J. Graph Theory、Discrete Math.、Discrete Appl. Math. 以及中国科学等国内外学术刊物上发表60余篇SCI期刊学术论文。主持国家自然科学基金3项(面上2项,青年1项),主持浙江省自然科学基金3项(含重点1项),主持留学回国人员科研启动基金1项,现为《Journal of Combinatorics Optimization》国际期刊编委。成果先后获省自然科学学术奖一等奖、省科学技术奖二等奖、省首批“担当作为好支书”、省高校“最受师生喜爱的书记”、省教育系统“事业家庭兼顾型”先进个人、省“最美家庭”、校第二届“砺行”奖教金、校第五届“最美教师”、校“优秀共产党员”,连续三届获校“我心目中的好老师”、六次获校优秀班主任,入选校首批学术名师计划。主持1门省一流线下课程、1门课程思政示范课程,至今已指导研究生20多人,指导研究生发表SCI论文20多篇,16人次被评为研究生国家奖学金、省优秀毕业生、校优秀毕业生、校长特别奖等荣誉。