博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作党风廉政学生工作校友之家招聘信息内部信息English
博彩导航
 学院新闻 
 通知通告 
 学术活动 
 学生工作 
 人才培养 
 
当前位置: 博彩导航>>博彩导航>>学术活动>>正文
甬江数学讲坛296讲(2022年第80讲)
2022-11-01 17:14     (点击:)

报告题目:Generalization of Graph Neural Networks and Graph Structural Learning for Robust Representation

人:吕绍高 (南京审计大学 教授)

报告时间2022-11-10(星期四) 13:30开始

报告地点:腾讯会议,会议号:559-783-740

报告摘要This report consists of two parts associated with graph neural networks: generalization and graph structural learning. We first study the Rademacher complexity of GNNs, as one of independent-algorithm generalization measurements. In addition, we also give upper bounds of the uniform stability of proximal SGD of L_p-regularized GNN, which is also used as generalization ability of some specific algorithm. Importantly, inspired by our theoretical findings, we propose a new graph structure learning to generate a clean adjacency matrix for downstream robust representation and learning. Several experiments over real graph data is implemented to show comparable performances of the proposed method on GNNs.

专家简介:吕绍高,南京审计大学统计与数据科学学院教授,博士生导师。2011年毕业于中国科大-香港城市大学联合培养项目,获得理学博士学位。主要研究方向是统计机器学习,当前研究兴趣包括联邦学习、再生核方法以及深度学习与图神经网络。迄今为止在SCI检索的国际期刊上发表论文20多篇,包括统计学期刊《Annals of Statistics2篇、人工智能类期刊《Journal of Machine Learning Research3篇、“NeurIPS”与《Journal of Econometrics》各1篇。曾主持过国家自然科学基金项目2项。长期担任人工智能顶级会议“NeurIPS”“ICML”“AAAI”以及“AIStat”程序委员或审稿人。

关闭窗口
宁波大学 | 图书馆


地址:宁波市江北区风华路818号宁波大学包玉书9号楼