报告题目:On the existence of solutions to the Orlicz-Minkowski problem
报 告 人:鲁建 (华南师范大学)
会议时间:2022/9/23 15:30-16:30
会议地点:9号楼113会议室
报告摘要:The Orlicz-Minkowski problem arises from modern convex geometry. In the smooth case, it is equivalent to solving a class of Monge-Ampere type equations defined on the unit hypersphere. These equations could be degenerate or singular in different conditions. We will talk about some recent new results on the existence of solutions to the Orlicz-Minkowski problem.
报告人简介:鲁建,2013年在清华大学获博士学位,现为华南师范大学教授。研究方向主要为偏微分方程,特别是Monge-Ampere 型方程及其在几何中的应用。在 Adv. Math.、J. Funct. Anal.、Trans. Amer. Math. Soc.、Calc. Var. Partial Differential Equations、J. Differential Equations 等数学期刊上发表高水平论文10余篇。主持国家自然科学基金优秀青年项目、面上项目等多项课题。