报告题目:Anti-Ramsey number of matchings in r-partite r-uniform hypergraphs
报 告 人:康丽英(上海大学 教授)
报告时间:2022年6月21日 下午15:00开始
报告地点:腾讯会议线上报告
会议链接://meeting.tencent.com/dm/kkfm6RTlV2fK
会议ID:502-949-016
报告摘要:An edge-colored hypergraph is rainbow if all of its edges have different colors. Given two hypergraphs H and G, the anti-Ramsey number ar(G,H) of H in G is the maximum number of colors needed to color the edges of G so that there does not exist a rainbow copy of H. Li et al. determined the anti-Ramsey number of k-matchings in complete bipartite graphs. Jin and Zang showed the uniqueness of the extremal coloring. In this talk, as a generalization of these results, we determine the anti-Ramsey number $ar_r (K_{n_1,...,n_r}, M_k)$ of k-matchings in complete r-partite r-uniform hypergraphs and show the uniqueness of the extremal coloring. We also prove that $K_{k−1,n_2,...,n_r}$ is the unique extremal hypergraph for Turán number $ex_r (K_{n_1,..., n_r}, M_k)$ and show that $ar_r(K_{n_1,..., n_r}, M_k) = ex_r(K_{n_1,..., n_r}, M_{k-1})+1$, which gives a multi-partite version result of
Ozkahya and Young’s conjecture.
报告人简介:康丽英,上海大学数学系教授,博士生导师。曾获“上海市三八红旗手”,“上海市曙光学者”称号。中国运筹学会常务理事、中国工业与应用数学学会组合图论专业委员会副主任委员、中国数学会组合图论分会理事。 担任国际期刊《Discrete Mathematics, Algorithms and Applications》、 《Journal of the Operations Research Society of China》、《Communications on Applied Mathematics and Computation》和国内期刊《运筹学学报》编委。在《SIAM Discrete Mathematics》、《Journal of Graph Theory》、《European Journal of Combinatorics》等学术期刊上发表学术论文160余篇,主持完成5项国家自然科学基金项目。曾在美国南卡莱罗纳大学、荷兰蒂尔堡大学、法国巴黎十一大等多所大学进行学术访问和合作研究。