博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作党风廉政学生工作校友之家招聘信息内部信息English
博彩导航
 学院新闻 
 通知通告 
 学术活动 
 学生工作 
 人才培养 
 
当前位置: 博彩导航>>博彩导航>>学术活动>>正文
甬江数学讲坛248讲(2022年第32讲)
2022-05-23 14:26     (点击:)

报告题目:Kernel Based Methods for Missing Dynamics and Elliptic Inverse Problems

报告人:蒋诗晓 (上海科技大学 副教授)

会议时间:2022/5/25(周三) 9:30开始

会议地点:线上,腾讯会议号: 837 671 936

 

报告摘要:In this talk, we review diffusion maps algorithm as a manifold learning technique and discuss its applications in two problems, one being recovery of missing dynamics and the other elliptic inverse problems on Riemannian manifolds. For missing dynamics problem, we propose a framework that reformulates the prediction problem as a supervised learning problem to approximate a map that takes the memories of the resolved and identifiable unresolved variables to the missing components in the resolved dynamics. Supporting numerical results on instructive nonlinear dynamics, including the two-layer Lorenz system, the truncated Burger-Hopf equation, the 57-mode barotropic stress model, and the Kuramoto-Sivashinsky (KS) equation. For elliptic inverse problem, we investigate the formulation and implementation of Bayesian inverse problems to learn the diffusion coefficient of a second-order elliptic PDE on a closed manifold from noisy measurements of the solution. The resulting computational method is mesh-free and easy to implement, and can be applied without full knowledge of the underlying manifold, provided that a point cloud of manifold samples is available. Numerical results validate our graph-based approach and demonstrate the need to design graphical Matérn-type Gaussian field priors that account for boundary conditions when manifolds have boundaries.

 

报告人简介:蒋诗晓,上海科技大学数学科学研究院副教授。2017年博士毕业于上海交通大学,2017年至2020年,在美国宾州州立大学数学系做博士后,随后担任助研教授, 2020年入职上海科技大学。主要研究方向是非线性色散波,算子估计,流形学习等领域,相关研究成果发表在 J.Fluid Mech., J. Comput. Phys., Inverse Problems, New J. Phys., 等国际知名期刊上,目前主持国家自然科学基金青年项目。

关闭窗口
宁波大学 | 图书馆


地址:宁波市江北区风华路818号宁波大学包玉书9号楼