博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作党风廉政学生工作校友之家招聘信息内部信息English
博彩导航
 学院新闻 
 通知通告 
 学术活动 
 学生工作 
 人才培养 
 
当前位置: 博彩导航>>博彩导航>>学术活动>>正文
甬江数学讲坛236讲(2022年第20讲)
2022-05-04 19:16     (点击:)

报告题目:On Thurston's "geometric triangulation" conjecture

报告人:葛化彬 教授(中国人民大学)

会议时间:2022/5/5  15:30开始

会议地点:腾讯会议,会议号:150-359-022

摘要:After the Hyperbolization Theorem, the existence of hyperbolic structure is clear. However, for a hyperbolic 3-manifold, the existence of a geometric triangulation is still open. My talk is along the direction of solving this conjecture. Using combinatorial Ricci flow methods, we show: Let M be a compact 3-manifold with boundary consisting of surfaces of genus at least 2. If M admits an ideal triangulation with valence at least 10 at all edges, then there exists a unique hyperbolic metric on M with totally geodesic boundary under which the ideal triangulation is geometric. This provides the first existence result of a geometric triangulation on such 3-manifolds, and shows a deep connection between the topology and the geometry of 3-manifolds. Moreover, the combinatorial Ricci flow provides an effective tool of finding geometric structures and geometric triangulations of 3-manifolds. The talk is based on joint work with Ke Feng and Bobo Hua.

 

报告人简介:葛化彬,中国人民大学数学学院教授,博士生导师,数学系系主任。主要研究方向为几何拓扑,推广了柯西刚性定理和Thurston圆堆积理论,部分解决Thurston的“几何理想剖分”猜想、完全解决Cheeger-Tian、林芳华的正则性猜想,相关论文分别发表在Geom. Topol., Geom. Funct. Anal., Amer. J.Math., Adv. Math.等著名数学期刊。

关闭窗口
宁波大学 | 图书馆


地址:宁波市江北区风华路818号宁波大学包玉书9号楼