报告题目:Cycle Mengerian Tournaments
报 告 人:陈旭瑾(中国科学院数学与系统科学研究院 研究员)
报告时间:2021年6月10日 下午14:30开始
报告地点:腾讯会议线上报告
会议链接://meeting.tencent.com/s/rDfoMqzjcxRo
会议ID:197 207 700
报告摘要:Let T = (V, A) be a tournament with a nonnegative integral weight w(e) on each arc e. A subset F of arcs is called a feedback arc set if T\F contains no cycles (directed). A collection C of cycles (with repetition allowed) is called a cycle packing if each arc e is used at most w(e) times by members of C. We call T cycle Mengerian if, for every nonnegative integral function w defined on A, the minimum total weight of a feedback arc set is equal to the maximum size of a cycle packing. In this talk, we will discuss the characterization that a tournament is cycle Mengerian if and only if it contains none of four Mobius ladders as a subgraph. (Joint work with Guoli Ding, Wenan Zang, and Qiulan Zhao.)
报告人简介:陈旭瑾,2004年获香港大学博士学位,现为中国科学院数学与系统科学研究院研究员。主要研究兴趣是组合优化的理论和应用,包括算法博弈论、网络优化、多面体组合等。曾获中国青年科技奖、中国运筹学会青年科技奖、国家优秀青年基金。个人主页://people.ucas.ac.cn/∼xchen?language=en。