报告题目:On arithmetically thick sets in R^d
报 告 人:丰德军(香港中文大学 教授)
会议时间:2021年1月22日 下午2:30开始
会议地点:腾讯会议 ID:999210878
报告摘要: A compact set E in the d-dimensional Euclidean space is said to be arithmetically thick if there exists a positive integer n so that the n-fold arithmetic sum of E has non-empty interior. We give a sufficient condition to guarantee the arithmetic thickness. Moreover, we verify this property for several classes of fractal sets, including all the self-similar sets and self-conformal sets that are not lying in a proper affine subspace. We also prove it for self-affine sets under mild assumptions. This is joint work with Yu-Feng Wu.
报告人介绍:丰德军,香港中文大学教授。丰德军教授在重分形分析、迭代函数系统的维数理论,热力学机制的数学原理、自相似结构的刚性等研究上做出了一系列开创性的成果,在Comm. Pure Appl. Math., Geom. and Func. Anal., J. Eur. Math. Soc.等数学期刊上发表SCI论文60余篇,引用800余次,是国际分形几何和动力系统研究领域的一流专家。