报告题目:Equidistribution of quadratic roots and applications to prime number theory
报 告 人:郗平(西安交通大学)
报告时间:2020年12月18日(星期五)15:30-
报告地点:腾讯会议线上报告
会议ID:117 970 483
报告摘要:Given an irreducible quadratic polynomial of fixed discriminant, the quadratic roots mod m are expected to be equidistributed as m runs over reasonable sets. We will give a short historical survey on this topic, as well as our recent progress on the case of friable moduli (based on the joint with Cécile Dartyge and Jie Wu). Moreover, a reasonable equidistribution can also lead to non-trivial multiplicative structures in prime number theory, and an application to a special case of Schinzel hypothesis will be discussed in this talk. The underlying tools will include Gauss’s correspondence in the theory of binary quadratic forms and arithmetic exponent pairs for trace functions developed by Jie Wu and the speaker.
报告人简介:郗平,西安交通大学教授、博士生导师,主要研究领域为数论,涉及代数迹函数的解析理论、素数分布、筛法及自守形式等方面的研究。研究成果发表于Inventiones mathematicae、Compositio Mathematica、International Mathematics Research Notices、Mathematische Zeitschrift等国际数学期刊。目前主持国家杰出青年科学基金、国家自然科学基金面上项目及中法合作交流项目各一项。