报告题目:Algebraic structure and geometrical formulation of adjoint-symmetries of partial differential equation
报 告 人:王宝(加拿大 Brock 大学 博士后)
报告时间:2020年11月4日 10:00-11:00
报告地点:阳明学院303会议室
报告摘要:Adjoint-symmetries of a partial differential equation (PDE) can be defined as solutions of the adjoint linearization (Frechet derivative) equation holding on the space of solutions to the PDE. Their algebraic structure for general PDE system is studied herein. Symmetries are shown to have three different linear actions on the linear space of adjoint-symmetries. These linear actions are used to construct bilinear adjoint-symmetry brackets. Finally, a geomerical formulation for adjoint-symmetries as 1-forms is studied for general partial differential equaitons (PDEs), which provides a dual counterpart of the geometrical meaning of symmetries as tangent vector fields on the solutions space of a PDE.
报告人简介: 王宝,加拿大 Brock 大学博士后。2019年中国科学院数学与系统科学研究院博士毕业,导师胡星标研究员。现在加拿大 Brock 大学,访问 Stephen Anco 教授,研究方向为孤立子和可积系统。其相关研究结果发在 Int. Math. Res. Not., J. Phys. A,等杂志。