博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作党风廉政学生工作校友之家招聘信息内部信息English
博彩导航
 学院新闻 
 通知通告 
 学术活动 
 学生工作 
 人才培养 
 
当前位置: 博彩导航>>博彩导航>>学术活动>>正文
甬江数学讲坛118讲(2020年第45讲)
2020-10-14 09:30     (点击:)

报告题目:Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion

报 告 人:何洪津(杭州电子科技大学 副教授)

报告时间:2020年10月21日 10:00开始

报告地点:阳明学院303会议室

报告摘要:Tensor completion refers to the task of estimating the missing data from an incomplete measurement or observation, which is a core problem frequently arising from the areas of big data analysis, computer vision, and network engineering. Due to the multidimensional nature of high-order tensors, the matrix approaches, e.g., matrix factorization and direct matricization of tensors, are often not ideal for tensor completion and recovery. Exploiting the potential periodicity and inherent correlation properties appeared in real-world tensor data, in this talk, we shall incorporate the low-rank and sparse regularization technique to enhance Tucker decomposition for tensor completion. A series of computational experiments on real-world datasets, including color images and face recognition, show that our approach performs better than many existing state-of-the-art matricization and tensorization approaches in terms of achieving higher recovery accuracy. (Joint work with C. Pan, C. Ling, L.Q. Qi, and Y. Xu)

报告人简介:男,副教授,硕士生导师,2012年6月博士毕业于南京师范大学计算数学专业。主要研究方向为数值优化及其在图像处理、机器学习等领域中的应用。发表学术论文40余篇,研究成果发表在Numerische Mathematik, Inverse Problems, Journal of Scientific Computing, Science China Mathematics等国际权威期刊。主持完成国家面上、青年基金和省基金一般科研项目4项,参与国家面上、省重大、重点项目5项。2017年10月入选浙江省高校中青年学科带头人。

 

关闭窗口
宁波大学 | 图书馆


地址:宁波市江北区风华路818号宁波大学包玉书9号楼