报告题目:A $\sigma_2$ Penrose inequality for conformal asymptotically hyperbolic 4-discs
报 告 人:韦韡 (上海数学中心 博士后)
报告时间:2020年9月23日 15:00 开始
报告地点:腾讯会议ID:883 450 897
或点击链接入会://meeting.tencent.com/s/XCBaGtrBz9kW
报告摘要:In this talk, we consider conformal metrics on a unit 4-disc with an asymptotically hyperbolic end and possible isolated conic singularities. We define a mass term of the AH end. If the $\sigma_2$ curvature has lower bound $\sigma_2$ ≥ 32 , we prove a Penrose type inequality relating the mass and contributions from singularities. We also classify sharp cases, which is the standard hyperbolic 4-space H4 when no singularity occurs. It is worth noting that our curvature condition implies non-positive energy density. This is joint work with Fang, Hao.
报告人简介:韦韡,上海数学中心博士后。2012年本科毕业于河海大学,2019年在中国科学技术大学取得博士学位,2017-2019年访问美国爱荷华大学,2019年获得博士后创新人才计划。主要研究领域是几何分析与非线性偏微分方程,研究成果发表在 JFA, CVPDE,IMRN,JDE, CPAA等多个颇具影响力的期刊上.