报告时间:2020年8月16日(周日)上午9点(北京时间)开始
报告地点:腾讯会议在线报告
会议链接://meeting.tencent.com/s/Mhl4tXRCarNc
会议 ID:590 848 008
系列课程讲座题目5:Introduction to Bayesian Statistics and Statistical Learning
课程讲授人:Xiao Wang(美国普渡大学 教授)
报告摘要: Statistics and machine learning have played an important role in modern data analysis and artificial intelligence. This series of lectures will mainly focus on two important topics in statistics: Bayesian Statistics and Statistical Learning. For Bayesian Statistics, I will first present a general framework on Bayesian inference. Then, I will discuss the sampling techniques using Markov Chain Monte Carlo (MCMC). Specific methods include rejection sampling, importance sampling, the Hastings-Metropolis algorithm, and simulated annealing. For Statistical Learning, I will start from the important applications, which are solved by modern learning methods. Then, I will discuss the problems of classification and linear regression. I will further talk about nonparametric methods, such as splines, kernel methods, and tree methods.
报告人简要: Xiao Wang,美国普渡大学统计系教授。 Xiao Wang教授于1997年在中国科技大学获理学学士学位,2000年在中国科技大学获理学硕士学位,2005年毕业于美国密西根大学,获统计学博士学位。Xiao Wang教授的研究兴趣为人工智能,机器学习,非参数统计,大数据分析等方面,并作了大量研究工作。在Annals of Statistics,Journal of the American Statistical Association,Biometrika,AAAI,SIAM Journal of Optimization等统计和人工智能顶级期刊上发表了20余篇论文。