报告题目:Existence of Perfect Splitter Sets
报告人:袁平之 华南师范大学
报告时间:2019年3月28日(星期四)10:30-11:30
报告地点:龙赛北楼311报告厅
报告摘要:Given integers k_1, k_2 with 0≤k_1<k_2, the determinations of all positive integers q for which there exists a perfect splitter B[-k_1, k_2](q) set is a wide open question in general. In this talk, we introduce the new necessary and sufficient conditions for an odd prime p such that there exists a nonsingular perfect B[-1,3](p) set. We also give some necessary conditions for the existence of purely singular perfect splitter sets. In particular, we determine all perfect B[-k_1, k_2](2^n) sets for any positive integers k_1,k_2 with k_1+k_2≥4. We also prove that there are infinitely many primes p such that there exists a perfect B[-1,3](p) set.
报告人简介:袁平之教授,华南师范大学教授、博士生导师,华南师大学位委员会委员,“广东特支计划”百千万工程领军人才。他研究兴趣广泛,研究领域涵盖了经典数论中的不定逼近、丢番图方程、超越数论;组合数论中零和问题和非唯一分解理论;图论中的图和张量的本原指数;有限域上置换多项式和编码理论以及代数中的*-clean环的结构等。主持多项国家面上基金项目,发表学术论文150多篇。他发展了Thue-Siegel方法和柯召方法,完全解决了几类四次不定方程和指数不定方程的求解问题和有关猜测,并解决了零和问题和本原指数等方面的几个重要的公开问题。