报告时间:2024年5月16日 10:30开始
报 告 人:鲁建(华南师范大学 教授)
报告地点:9号楼 113报告厅
报告题目:Some recent results on the Lp dual Minkowski problem
报告摘要:The Lp dual Minkowski problem arises from modern convex geometry. In the smooth case, it is equivalent to solving a class of Monge-Ampere type equations defined on the unit hypersphere. These equations could be degenerate or singular in different conditions. We will talk about some new nonuniqueness and nonexistence results for the Lp dual Minkowski problem.
报告人简介:鲁建,华南师范大学教授、博导,国家优青。研究方向主要为偏微分方程和几何分析,特别是Monge-Ampere型方程及其在几何中的应用。在 Adv. Math.、J. Funct. Anal.、Trans. Amer. Math. Soc.、Calc. Var. Partial Differential Equations、J. Differential Equations 等数学期刊上发表SCI收录论文10余篇。主持国家自然科学基金面上项目等多项课题。