报告时间:2024年3月15日 下午14:00开始
报 告 人:戴烜中(京都大学数理解析研究所 研究员)
报告地点:包玉书9号楼305
报告题目:On recent progress of chiral de Rham complex and modular forms
报告摘要:In 1994, D. Zagier, Y. Manin, and W. Eholzer speculated that the Rankin-Cohen brackets of modular forms should be related to vertex operator algebras. However it looks very difficult to connect the axioms of operations of modular forms and vertex algebras. Our attempt involves sheaf constructions known as the chiral de Rham complex (CDR), whose cohomology is linked to the Witten genus. Instead of constructing sheaf of vertex algebras on modular curves directly, we start from CDR on the upper half plane and consider the invariant sections under the action of congruence subgroups. In this talk, we will explain that modular forms appears naturally on invariant sections.
报告人简介: 戴烜中,京都大学数理解析研究所,研究员。主要研究方向为顶点算子代数和模形式。在 Adv. Math.,IMRN等国际知名杂志发表多篇高水平论文。