报告题目:Inverse Problems for Subdiffusion from Observation at an Unknown Terminal Time
报 告 人:金邦梯(香港中文大学)
会议时间:2022/12/22 下午2:30开始
会议地点:腾讯会议号870-116-124
报告摘要:Inverse problems of recovering space-dependent parameters, e.g., initial condition, space-dependent source or potential coefficient, in a subdiffusion model from the terminal observation have been extensively studied in recent years. However, all existing studies have assumed that the terminal time at which one takes the observation is exactly known. In this talk, we discuss three canonical inverse problems, e.g., backward problem, inverse source and inverse potential problems, from the terminal observation at an unknown time. The subdiffusive nature of the problem indicates that one can simultaneously determine the terminal time and space-dependent parameter. We also illustrate the theory with several one- and two-dimensional numerical experiments to illustrate the feasibility of the approach. The talk is based on joint works with Dr. Zhi Zhou and Dr Yavar Kian.
报告人简介:金邦梯,2008年获香港中文大学数学博士学位。2009年1月至2010年8月在德国布莱梅工业数学中心任博士后,2010年9月至2013年8月在美国德州农工大学应用和计算数学研究所任访问助理教授,2013年9月至2014年8月任美国加州大学河滨分校数学系助理教授,2014年9月起受聘于英国伦敦大学学院计算机科学系(终身职位)。现任香港中文大学理学院数学系杰出创科学人。主要研究领域涉及反问题建模计算、分数阶偏微分方程正反问题的理论与计算、统计计算等。获得Inverse Problems Young Researcher Award (2014)、MediaV Young Researcher Award (2012);在国际学术刊物SIAM系列、Inverse Problem、Journal of Computational Physics、Mathematics of Computation、Applied and Computational Harmonic Analysis等发表论文70余篇,Google Scholar总引次数1400余次。 担任Fractional Calculus and Applied Analysis、Advances in Computational Mathematics,、Calcolo等杂志编委。