博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作学生工作校友之家招聘信息内部信息English
科学研究
 科研动态 
 科研成果 
 学术报告 
 科研机构 
 
当前位置: 博彩导航>>科学研究>>学术报告>>正文
甬江数学讲坛(2019年第4讲)
2019-04-09 16:54     (点击:)

报告题目:Soliton and periodic wave interaction solutions for sine-Gordon-type equations

报告人:安红利 南京农业大学 副教授

报告时间:2019年04月11日(星期四)9:00-10:00

报告地点:阳明学院303

报告摘要:By employing the Madelung transformation, the time-dependent harmonic oscillator with friction described by the Schr¨odinger equation is reduced to a hydrodynamic system. An exponential elliptic vortex ansatz is introduced and thereby a finite-dimensional nonlinear dynamical system is obtained. Time modulated physical variables corresponding to the divergence, spin, shear, and normal deformation rates of the Madelung velocity field are introduced and the dynamical system is reducible to a form amenable to general solutions. In particular, three typical elliptical vortex solutions termed pulsrodons are derived and their behaviors are simulated. These solutions have recently found applications in oceanic and atmospheric dynamics. Moreover, it is shown that the harmonic oscillator with friction has an underlying integrable structure of Ermakov-Hamiltonian type.

关闭窗口
宁波大学 | 图书馆