博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作党风廉政学生工作校友之家招聘信息内部信息English
科学研究
 科研动态 
 科研成果 
 学术报告 
 科研机构 
 
当前位置: 博彩导航>>科学研究>>学术报告>>正文
甬江数学讲坛458讲(2024年第44讲)-New Monge-Ampère Equations in bi-Hermitian Geometry
2024-06-19 10:43     (点击:)


报告时间:2024621日 900开始

报 告 人:Hao FangUniversity of Iowa

报告地点:9-113

报告题目:New Monge-Ampère Equations in bi-Hermitian Geometry

报告摘要:We report some recent progress in bi-Hermitian geometry. This is a joint work with Josh Jordan. We introduce complex surfaces with split tangent, which contain two important classes of type VII surfaces in the classification theory of Enriques-Kodaira. The split tangent structure is naturally related to the Bismut Ricci curvature of pluri-closed bi-Hermtian metrics. We pose several Monge-Ampère type PDEs that are new in both geometry and PDE theories. We establish certain solvability theorems under proper geometric settings.    

As applications, on surfaces with split tangent, we solve the prescribing Bismut-Ricci problems. For primary Hopf surfaces, we prove a uniformization theorem, linking all pluriclose bi-Hermitian metrics to Streets-Usinovskiy metrics. On Hopf surfaces, we also provide a second type of canonical metrics that are associated to a special Calabi-Yau type problem. On Inoue surfaces of type $M$, we establish classes of canonical metrics due to various geometric criteria.

报告人简介:Hao FangUniversity of Iowa, Associate Professor,博士毕业于Princeton University。主要从事微分几何、几何分析等领域的研究,相关研究成果发表在Invent. Math., J. Differential Geom., Adv. Math., J. Reine Angew. Math. 等国际学术期刊上。





关闭窗口
宁波大学 | 图书馆


地址:宁波市江北区风华路818号宁波大学包玉书9号楼