基本信息 | BASIC INFORMATION
姓名 | Name: Tomoyuki Arakawa (荒川 知幸)
专业 | Major: 数学 | Mathematical
职称 | Title: 研究员 | Researcher
出生地 | Birthplace: 名古屋、日本 | Nagoya, Japan
公民身份 | Citizenship: 日本 | Japanese
E-mail: arakawa@navbocai.com
通信地址 | COMMUNICATION ADDRESS
宁波市江北区风华路818号宁波大学包玉书9号楼博彩导航
; 邮编:315211
School of Mathematics and Statistics, Bldg. 9, Ningbo University.
Fenghua Road 818, Jiangbei District, 315211 Ningbo City
研究方向 | RESEARCH INTERESTS
表示论 Represntation theory
顶点代数 Vertex algebras
数学物理 Mathematical physics
教育背景 | EDUCATION BACKGROUND
1995.04-1999.03 名古屋大学大学院多元数理科学研究科 博士生
Ph.D. in Mathematics, Nagoya University
1993.04-1995.03 名古屋大学大学院多元数理科学研究科 硕士生
M.S. in Mathematics, Nagoya University
1988.10-1993.03 京都大学 本科生
B.S. in Mathematics, Kyoto Univesity
代表性论文与出版物 | PUBLICATIONS
(with J. van Ekeren) Rationality and Fusion Rules of Exceptional W-Algebras, arXiv:1905.11473 [math.RT], J. Eur. Math. Soc. (JEMS) 25 (2023), no. 7, pp. 2763–2813. //doi.org/10.4171/jems/1250
15.(with E. Frenkel) Quantum Langlands duality of representations of W-algebras, Compos. Math. Volume 155, Issue 12, December 2019, 2235-2262. //doi.org/10.1112/S0010437X19007553
(with T. Creutzig and A. Linshaw) W-algebras as coset vertex algebras, Invent. Math., October 2019, Volume 218, Issue 1, pp 145–195. //doi.org/10.1007/s00222-019-00884-3
13 (with K. Kawasetsu) Quasi-lisse vertex algebras and modular linear differential equations, In: V. G. Kac, V. L. Popov (eds.), Lie Groups, Geometry, and Representation Theory, A Tribute to the Life and Work of Bertram Kostant, Progr. Math., 326, Birkhauser, 2018.
12. (with A. Moreau) Joseph ideals and lisse minimal W-algebras, J. Inst. Math. Jussieu, 17 (2018), no. 2, 397–417. //dx.doi.org/10.1017/S1474748016000025
11. (with A. Premet) Quantizing Mishchenko-Fomenko subalgebras for centralizers via affine W-algebras, Trans. Moscow Math. Soc. 2017, 217-234. //doi.org/10.1090/mosc/264
10. Rationality of W-algebras: principal nilpotent cases, Ann. Math. 182 (2015), 565-604. //dx.doi.org/10.4007/annals.2015.182.2.4
9. Rationality of admissible affine vertex algebras in the category O, Duke Math. J, Volume 165, Number 1 (2016), 67-93. //dx.doi.org/10.1215/00127094-3165113
8. Associated varieties of modules over Kac-Moody algebras and $C_2$-cofiniteness of W-algebras, Int. Math. Res. Notices (2015) Vol. 2015 11605--11666. //dx.doi.org/10.1093/imrn/rnu277
7. A remark on the $C_2$-cofiniteness condition on vertex algebras, Math. Z. vol. 270, no. 1-2, 559-575, 2012. //doi.org/10.1007/s00209-010-0812-4
6. (with F. Malikov) A chiral Borel-Weil-Bott theorem, Adv. Math., 229 (2012) 2908-2949. //dx.doi.org/10.1016/j.aim.2011.11.002
5. (with P. Fiebig) The linkage principle for restricted critical level representations of affine Kac-Moody algebras, Compos. Math., 148, 1787--1810, 2012. //dx.doi.org/10.1112/S0010437X12000395
4. (with D. Chebotarov and F. Malikov) Algebras of twisted chiral differential operators and affine localization of $g$-modules, Sel. Math. New Ser., vol.17, no. 1, 1-46, 2011. //doi.org/10.1007/s00029-010-0040-0
3. Representation Theory of W-Algebras, Invent. Math., Vol. 169 (2007), no. 2, 219--320. //dx.doi.org/10.1007/s00222-007-0046-1
2. Representation Theory of Superconformal Algebras and the Kac-Roan-Wakimoto Conjecture, Duke Math. J., Vol. 130 (2005), No. 3, 435-478. //dx.doi.org/10.1215/S0012-7094-05-13032-0
1. (with T. Suzuki) Duality between $sl_n(C)$ and the degenerate affine Hecke algebra, J. Algebra 209 (1998), no. 1, 288--304. //dx.doi.org/10.1006/jabr.1998.7530
国际会议作报告情况 | TALKS AT INTERNATIONAL CONFERENCES
Invited Talk, ICM 2018, Rio de Janeiro