博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作党风廉政学生工作校友之家招聘信息内部信息English
师资队伍
 师资力量 
 全体教师 
 博士生导师 
 硕士生导师 
 
当前位置: 博彩导航>>师资队伍>>全体教师>>正文
Tomoyuki Arakawa
2023-11-08 08:44     (点击:)

基本信息 | BASIC INFORMATION

姓名 | Name:Tomoyuki Arakawa (荒川 知幸)

专业 | Major:| Mathematical

职称 | Title:研究员 | Researcher

出生地 | Birthplace:名古屋、日本 | Nagoya, Japan

公民身份 | Citizenship:日本 | Japanese

E-mail:arakawa@navbocai.com

通信地址 | COMMUNICATION ADDRESS

宁波市江北区风华路818号宁波大学包玉书9号楼博彩导航 ; 邮编:315211

School of Mathematics and Statistics, Bldg. 9, Ningbo University.
Fenghua Road 818, Jiangbei District, 315211 Ningbo City

研究方向 | RESEARCH INTERESTS

  1. 表示论 Represntation theory

  2. 顶点代数 Vertex algebras

  3. 数学物理 Mathematical physics

教育背景 | EDUCATION BACKGROUND

1995.04-1999.03名古屋大学大学院多元数理科学研究科博士生
Ph.D. in Mathematics, Nagoya University

1993.04-1995.03名古屋大学大学院多元数理科学研究科硕士生
M.S. in Mathematics, Nagoya University

1988.10-1993.03京都大学本科生
B.S. in Mathematics, Kyoto Univesity

代表性论文与出版物 | PUBLICATIONS

(with J. van Ekeren) Rationality and Fusion Rules of Exceptional W-Algebras, arXiv:1905.11473 [math.RT], J. Eur. Math. Soc. (JEMS) 25 (2023), no. 7, pp. 2763–2813. //doi.org/10.4171/jems/1250

15.(with E. Frenkel) Quantum Langlands duality of representations of W-algebras, Compos. Math. Volume 155, Issue 12, December 2019, 2235-2262. //doi.org/10.1112/S0010437X19007553

(with T. Creutzig and A. Linshaw) W-algebras as coset vertex algebras, Invent. Math., October 2019, Volume 218, Issue 1, pp 145–195. //doi.org/10.1007/s00222-019-00884-3

13 (with K. Kawasetsu) Quasi-lisse vertex algebras and modular linear differential equations, In: V. G. Kac, V. L. Popov (eds.), Lie Groups, Geometry, and Representation Theory, A Tribute to the Life and Work of Bertram Kostant, Progr. Math., 326, Birkhauser, 2018.

12. (with A. Moreau) Joseph ideals and lisse minimal W-algebras, J. Inst. Math. Jussieu, 17 (2018), no. 2, 397–417. //dx.doi.org/10.1017/S1474748016000025

11. (with A. Premet) Quantizing Mishchenko-Fomenko subalgebras for centralizers via affine W-algebras, Trans. Moscow Math. Soc. 2017, 217-234. //doi.org/10.1090/mosc/264

10. Rationality of W-algebras: principal nilpotent cases, Ann. Math. 182 (2015), 565-604. //dx.doi.org/10.4007/annals.2015.182.2.4

9. Rationality of admissible affine vertex algebras in the category O, Duke Math. J, Volume 165, Number 1 (2016), 67-93. //dx.doi.org/10.1215/00127094-3165113

8. Associated varieties of modules over Kac-Moody algebras and $C_2$-cofiniteness of W-algebras, Int. Math. Res. Notices (2015) Vol. 2015 11605--11666. //dx.doi.org/10.1093/imrn/rnu277

7. A remark on the $C_2$-cofiniteness condition on vertex algebras, Math. Z. vol. 270, no. 1-2, 559-575, 2012. //doi.org/10.1007/s00209-010-0812-4

6. (with F. Malikov) A chiral Borel-Weil-Bott theorem, Adv. Math., 229 (2012) 2908-2949. //dx.doi.org/10.1016/j.aim.2011.11.002

5. (with P. Fiebig) The linkage principle for restricted critical level representations of affine Kac-Moody algebras, Compos. Math., 148, 1787--1810, 2012. //dx.doi.org/10.1112/S0010437X12000395

4. (with D. Chebotarov and F. Malikov) Algebras of twisted chiral differential operators and affine localization of $g$-modules, Sel. Math. New Ser., vol.17, no. 1, 1-46, 2011. //doi.org/10.1007/s00029-010-0040-0

3. Representation Theory of W-Algebras, Invent. Math., Vol. 169 (2007), no. 2, 219--320. //dx.doi.org/10.1007/s00222-007-0046-1

2. Representation Theory of Superconformal Algebras and the Kac-Roan-Wakimoto Conjecture, Duke Math. J., Vol. 130 (2005), No. 3, 435-478. //dx.doi.org/10.1215/S0012-7094-05-13032-0

1. (with T. Suzuki) Duality between $sl_n(C)$ and the degenerate affine Hecke algebra, J. Algebra 209 (1998), no. 1, 288--304. //dx.doi.org/10.1006/jabr.1998.7530

国际会议作报告情况 | TALKS AT INTERNATIONAL CONFERENCES

Invited Talk,ICM 2018, Rio de Janeiro


关闭窗口
宁波大学 | 图书馆


地址:宁波市江北区风华路818号宁波大学包玉书9号楼