博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作学生工作校友之家招聘信息内部信息English
师资队伍
 师资力量 
 全体教师 
 博士生导师 
 硕士生导师 
 
当前位置: 博彩导航>>师资队伍>>全体教师>>正文
陈传强
2019-03-11 13:29     (点击:)

基本信息:

姓名:陈传强

专业:基础数学

职称:教授

E-mailchenchuanqiang@navbocai.com

研究方向:

       1. 完全非线性偏微分方程 Fully nonlinear partial differential equations

       2. 几何分析 Geometric analysis

教育背景:

2007.9-2012.6    中国科技大学 数学科学学院 博士生(导师:麻希南教授)

2003.9-2007.7    山东大学 数学系     本科生

工作经历:

2019.12-至今  宁波大学 博彩导航   教授

2017.01-2019.12  浙江工业大学 理学院   副教授

2014.07-2016.12 浙江工业大学 理学院  讲师

2012/06-2014/07 中国科学技术大学    博士后(合作导师:李嘉禹教授)

访学经历:

2018.10-2018.11 加拿大麦吉尔大学 访问学者(访问:管鹏飞院士)

2013.09-2013.12 澳大利亚国立大学 访问学者(访问:汪徐家院士)

2013.07-2013.08 复旦大学 访问学者(访问:洪家兴院士)

主要研究工作:

20. Chuanqiang Chen, Xujia Wang, Yating Wu. C^{1,\alpha} regularity of convex hypersurfaces with prescribed curvature measuresIndiana University Mathematics Journalaccepted2021


19. Chuanqiang Chen, Pengfei Guan, Junfang Li and J. Scheuer A fully-nonlinear flow and quermassintegral inequalities in the sphere. Pure and Applied Math Quarterly, accepted2021

18. Chen, Chuanqiang; Chen, Li; Mei, Xinqun; Xiang, Ni The classical Neumann problem for a class of complex mixed Hessian equations. Discrete and Continuous Dynamical Systems, accepted2021

17. Chen, Chuanqiang; Chen, Li; Mei, Xinqun; Xiang, Ni The classical Neumann problem for a class of mixed Hessian equations. Stud Appl Math., 2022,148, No. 1: 5-26

16. Chen, Chuanqiang; Ma, Xinan; Zhang, Dekai The Neumann Problem for Parabolic Hessian Quotient Equations. Acta Math. Sin. (Engl. Ser.) , 37 (2021), no. 9, 1313–1348.

15. Chen, Chuanqiang; Wei, Wei The Neumann problem of complex Hessian quotient equations. Int. Math. Res. Not. IMRN, 2021, no. 23, 17652–17672.

14. Chen, Chuanqiang; Zhang, Dekai The Neumann problem of Hessian quotient equations. Bull. Math. Sci., 11 (2021), no. 1, Paper No. 2050018, 26 pp.

13. Chen, Chuanqiang; Ma, Xinan; Wei, Wei The Neumann problem of special Lagrangian equations with supercritical phase. J. Differential Equations, 267 (2019), no. 9, 5388–5409.

12.  Chen, Chuanqiang; Huang, Yong; Zhao, Yiming Smooth solutions to the Lp dual Minkowski problem. Math. Ann., 373 (2019), no. 3-4, 953–976.

11.  Chen, Chuanqiang; Ma, Xinan; Salani, Paolo On space-time quasiconcave solutions of the heat equation. Mem. Amer. Math. Soc., 259 (2019), no. 1244, v+81 pp. ISBN: 978-1-4704-3524-0; 978-1-4704-5243-8

10. Chen, Chuanqiang; Ma, Xinan; Wei, Wei The Neumann problem of complex special Lagrangian equations with supercritical phase. Anal. Theory Appl., 35 (2019), no. 2, 144–162.

9. Chen, Chuanqiang; Xu, Lu; Zhang, Dekai The interior gradient estimate of prescribed Hessian quotient curvature equations. Manuscripta Math., 153 (2017), no. 1-2, 159–171.

8. Chen, Chuanqiang; Han, Fei; Ou, Qianzhong The interior $C^2$ estimate for the Monge-Ampère equation in dimension n=2. Anal. PDE, 9 (2016), no. 6, 1419–1432.

7.  Chen, Chuanqiang On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: spacetime quasiconcave solutions. Discrete Contin. Dyn. Syst., 36 (2016), no. 9, 4761–4811.

6. Chen, Chuanqiang The interior gradient estimate of Hessian quotient equations. J. Differential Equations, 259 (2015), no. 3, 1014–1023.

5.  Chen, Chuanqiang; Ma, Xinan; Shi, Shujun Curvature estimates for the level sets of solutions to the Monge-Ampère equation $detD^2u=1$. Chinese Ann. Math. Ser. B, 35 (2014), no. 6, 895–906.

4. Chen, Chuanqiang On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete Contin. Dyn. Syst., 34 (2014), no. 9, 3383–3402.

3Chen, Chuan Qiang; Hu, Bo Wen A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations. Acta Math. Sin. (Engl. Ser.), 29 (2013), no. 4, 651–674.

2. Chen, ChuanQiang Optimal concavity of some Hessian operators and the prescribed $\sigma_2$ curvature measure problem. Sci. China Math., 56 (2013), no. 3, 639–651.

1. Chen, ChuanQiang; Shi, ShuJun Curvature estimates for the level sets of spatial quasiconcave solutions to a class of parabolic equations. Sci. China Math. , 54 (2011), no. 10, 2063–2080.

科研项目:

1. 国家自然科学基金委员会,面上项目,12171260

    球面上的几何偏微分方程和几何不等式,

    2022-012025-1251 万元,在研,主持

2. 浙江省自然科学基金委员会,浙江省杰青项目,LXR22A010001

  几何偏微分方程的正则性及相关问题,

    2021-012023-1240 万元,在研,主持

3. 国家自然科学基金委员会,面上项目,11771396

  实和复的非线性椭圆偏微分方程的诺伊曼边值问题及几何应用,

    2018-012021-1248 万元,已结题,主持。

4. 浙江省自然科学基金委员会,一般项目,LY17A010022

  椭圆与抛物 Hessian 商方程解的正则性及相关几何问题,

    2017-012019-128 万元,已结题,主持。

5. 国家自然科学基金委员会,青年科学基金,11301497

  非线性偏微分方程解的微观凸性及其几何应用,

    2014-012016-1222 万元,已结题,主持。

获奖情况:

2021年,浙江省数学会科研成果奖一等奖

教学状况:

1.主讲本科生《泛函分析》、《线性代数》等。

2.主讲研究生《泛函分析》、《非线性椭圆偏微分方程》等。


关闭窗口
宁波大学 | 图书馆